Nervenzellen kommunizieren über elektrische Impulse, die von ihren Fortsätzen, den Axonen, weitergeleitet werden. Wie schnell eine Information weitergegeben wird, hängt unter anderem vom Durchmesser der Axone und der Dicke der isolierenden Myelinschicht ab, die die Axone umgibt. Dabei gilt: Je größer der Durchmesser und je dicker die Myelinschicht, desto besser die Signalübertragung. Bei Säugetieren ist das Hörsystem stark myelinisiert und einer der leistungsfähigsten Bereiche des Zentralnervensystems. Die LMU-Neurobiologin PD Dr. Conny Kopp-Scheinpflug hat mit ihrem Team nun am Mausmodell erstmals nachgewiesen, dass die Aktivität der Nervenzellen im Hörsystem die Myelinisierung beeinflusst – je aktiver die Zellen, desto dicker ist die Myelinschicht.
Übertragungsgeschwindigkeit und die Frequenz verdoppelt
Hörsinneszellen werden durch die Wahrnehmung von Geräuschen aktiviert. „Das Hörsystem von Mäusen zu untersuchen, bietet sich an, da die Tiere taub geboren werden und erst nach zwölf Tagen beginnen, Laute wahrzunehmen. Entsprechend steigert sich mit dem Hörbeginn die Aktivität der Nervenzellen“, sagt Kopp-Scheinpflug. Die Wissenschaftler untersuchten die neuronale Aktivität im Trapezkörper, einer zur Hörbahn gehörenden Struktur im Hirnstamm. Sie konnten zeigen, dass sich die Übertragungsgeschwindigkeit und die Frequenz der Signale verdoppelten, sobald die Mäuse hören konnten. Auch der Durchmesser der Nervenzellen und die Dicke der Myelinschicht nahmen im Laufe der Entwicklung des Hörsystems zu, bis sie die Werte erwachsener Tiere erreichten.
Mit Ohrstöpseln blieb Myelinschicht dünner
Zusätzlich untersuchten die Wissenschaftler, welche Auswirkungen eine verminderte Stimulierung der Nervenzellen im Trapezkörper hat. „Dazu haben wir die Ohren der Versuchstiere ab dem zehnten Lebenstag für weitere zehn Tage mit Ohrstöpseln verschlossen, was zu einem reversiblen Hörverlust von etwa 50 Dezibel führt“, sagt Kopp-Scheinpflug. In der Folge blieb die Zunahme des Axon-Durchmessers weitgehend aus, und auch die Myelinschicht blieb dünner. Verschlossen die Wissenschaftler die Ohren erwachsener Mäuse, verminderte sich die Dicke der Myelinschicht ebenfalls, nicht aber der Durchmesser der Axone. Aus diesen Ergebnissen schließen die Wissenschaftler, dass sowohl für den Aufbau als auch für die Aufrechterhaltung der Myelinschicht neuronale Aktivität wichtig ist, die Nervenzellen also stimuliert werden müssen.
Verlust mindert Übertragungsgenauigkeit
„Das aus unseren Daten entwickelte Computermodell sagt zudem voraus, dass nicht nur die axonale Leitfähigkeit abnimmt, sondern auch die Fähigkeit, mit hoher Frequenz Aktionspotentiale weiterzuleiten“, sagt Kopp-Scheinpflug. „Dieser Verlust mindert die Übertragungsgenauigkeit und ist besonders im Hörsystem kritisch, da die akustische Umwelt hauptsächlich durch die Verrechnung von Anzahl und Zeitpunkt der elektrischen Impulse wahrgenommen wird.“ (LMU, red)
James L. Sinclair, Matthew J. Fischl, Olga Alexandrova, et al.: Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. Journal of Neuroscience, 31 July 2017, 3728-16; DOI: 10.1523/JNEUROSCI.3728-16.2017.
Artikel teilen