Unerwarteter Bakterienstopper

Studie des Helmholtz-Instituts für RNA-basierte Infektionsforschung
Kli
newsimage406470.gif
© Mathias Müsken/HZI
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


* Pflichtfeld

Einem Forschungsteam ist es gelungen, eine Verbindung zu identifizieren, die das Wachstum von fünf Fusobakterienarten zuverlässig stoppt. Die gewonnenen Erkenntnisse sollen dazu beitragen, künftig die Heilungschancen bei verschiedenen Krebsarten zu verbessern.

Fusobakterien, die zur Mundflora gehören, stehen im Verdacht, das Wachstum von Krebs zu fördern. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) arbeiten daher an innovativen Strategien, um die Ausbreitung dieser Bakterien zu hemmen. Sogenannte Antisense-Moleküle, die wie programmierbare, zielgenaue Antibiotika wirken könnten, stellen einen vielversprechenden Ansatz dar. In einer Studie gelang es dem Forschungsteam von Jörg Vogel nun, eine Verbindung zu identifizieren, die das Wachstum von fünf Fusobakterienarten zuverlässig stoppt.

Das Mikrobiom im menschlichen Mund setzt sich aus mehr als 700 Bakterienarten aus 7 verschiedenen Stämmen zusammen – darunter auch Fusobacterium nucleatum. Aber nicht nur in der Mundhöhle ist diese Mikrobe zu finden. Sie kann auch andere Bereiche des Körpers besiedeln – insbesondere Tumorgewebe bei Speiseröhren-, Darm- und Brustkrebs. Es gibt Hinweise darauf, dass Fusobacterium nucleatum dort das Tumorwachstum sowie die Metastasenbildung fördert. Die Verbreitung dieser und anderer Fusobakterien gezielt zu hemmen, könnte sich daher positiv auf die Heilungschancen von Krebspatientinnen und -patienten auswirken. Doch wie lässt sich das erreichen? Diese Frage haben sich Wissenschaftlerinnen und Wissenschaftler des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) in Würzburg, einem Standort des Braunschweiger Helmholtz-Zentrums für Infektionsforschung in Kooperation mit der Julius-Maximilians-Universität Würzburg, gestellt.

„Fusobakterien fanden lange Zeit wenig Beachtung – und das trotz ihrer klinischen Bedeutung“, stellt Jörg Vogel fest, Geschäftsführender Direktor des HIRI und korrespondierender Autor der Studie. „Ein Ziel meiner Arbeitsgruppe am HIRI ist es, Strategien zu untersuchen, die diese Mikroben in Karzinomen gezielt beseitigen können.“

Maßgeschneiderte Antibiotika

Obwohl herkömmliche Antibiotika in der Lage sind, die Verbreitung von Fusobakterien zu hemmen und dadurch das Tumorwachstum zu verlangsamen, kann ihr langfristiger Einsatz unerwünschte Nebenwirkungen wie Magen-Darm-Probleme durch eine gestörte Darmflora hervorrufen. Dies liegt daran, dass sie nicht nur schädliche, sondern auch nützliche Bakterien angreifen. Deshalb suchen Wissenschaftlerinnen und Wissenschaftler am Würzburger Helmholtz-Institut nach neuen, gezielten Behandlungsmethoden, die diese Risiken vermeiden.

In ihrer aktuellen Studie, die sie in mBio, einem Fachmagazin der Amerikanischen Gesellschaft für Mikrobiologie, veröffentlicht haben, konzentrieren sie sich auf Peptidnukleinsäure (peptide nucleic acid, PNA). Dabei handelt es sich um künstlich hergestellte Moleküle, die DNA oder RNA ähneln. Im Gegensatz zu natürlichen Nukleinsäuren besteht das Rückgrat von PNAs jedoch nicht aus Zucker- und Phosphatgruppen, sondern aus einer proteinartigen Struktur. Diese Struktur, die kurzen Proteinketten – sogenannten Peptiden – ähnelt, verleiht PNAs eine außergewöhnliche Stabilität. Die Basen entsprechen denen in DNA, was es den PNAs ermöglicht, Transkripte gezielt anzusteuern. Als sogenannte Antisense-Moleküle binden PNAs an die komplementäre Boten-RNA (messenger RNA, mRNA) eines Zielgens und blockieren deren Funktion. Auf diese Weise unterbinden sie die Produktion lebenswichtiger Proteine. Diese gezielte Wirkungsweise positioniert PNAs als potenzielle Vertreter einer neuen Generation antibakterieller Wirkstoffe.

Eine unverhoffte Entdeckung

Die eingeschleusten Antisense-Moleküle, die gezielt Gene angreifen sollten, konnten das Bakterienwachstum zwar nicht wie angenommen hemmen, allerdings machte das Forschungsteam eine unerwartete Entdeckung: Die Kontrollverbindung FUS79, die nicht auf ein bestimmtes Transkript abzielte, zeigte eine starke Wirkung gegen fünf Fusobakterienstämme, ohne andere getestete Bakterienarten zu beeinflussen. „Das Ergebnis war überraschend, da die Verbindung nicht auf die für Antisense-Nukleinsäureketten erwartete Weise agiert, sondern einen neuen Mechanismus aufweist“, erklärt Valentina Cosi, Erstautorin der Studie und Doktorandin im Labor von Jörg Vogel. „Dieser scheint über Membranstress zu wirken, indem er die Struktur der Zellmembran destabilisiert oder ihre Funktion beeinträchtigt, was jedoch noch genauer untersucht werden muss.“Vogel ergänzt: „Als nächsten Schritt wollen wir den genauen Wirkmechanismus dieser Verbindung entschlüsseln und sie optimieren, um ihre Wirksamkeit noch weiter zu steigern.“

Die Studie liefert eine Grundlage für die Entwicklung von Antisense-Therapeutika gegen F. nucleatum und zeigt, dass diese Verbindung eine neue Strategie für gezieltere Antibiotika bieten könnte. Die gewonnenen Erkenntnisse sollen dazu beitragen, Forschung auf diesem Gebiet zu beschleunigen und künftig die Heilungschancen bei verschiedenen Krebsarten zu verbessern.

Originalpublikation:
Cosi V, Jung J, Popella L, Ponath F, Ghosh C, Barquist L, Vogel J (2025) An antisense oligomer conjugate with unpredicted bactericidal activity against Fusobacterium nucleatum. mBio, DOI: 10.1128/mbio.00524-25
https://doi.org/10.1128/mbio.00524-25

Quelle: idw

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige