Immunfunktion der B-Zellen besser erklären?

Einsatz computergestützter Bildanalyse
lz
topografischen Merkmale und Position der IgM-BCR
Die computergestützte Bildanalyse macht die verschiedenen topografischen Merkmale und Position der IgM-BCR (beide Bilder rechts) auf der Oberfläche von B-Zellen sichtbar. © Bugra Özdemir, Universität Freiburg
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Forscherinnen und Forscher der Uni Freiburg beschreiben erstmals ein Netzwerk von Membranerhebungen auf B-Lymphozyten. Es zeigt sich eine charakteristische „Landschaft“ aus miteinander verbundenen Erhebungen und Ausstülpungen.

Mithilfe neuer mikroskopischer Methoden in Kombination mit einer auf maschinellem Lernen basierenden Bildanalyse haben Freiburger Forscherinnen und Forscher neue Strukturen auf der Oberfläche lebender B-Zellen entdeckt, die sich auf die Verteilung und möglicherweise auf die Funktion ihrer Antigenrezeptoren auswirken. B-Zellen sind ein wichtiger Teil unseres Immunsystems und erkennen Krankheitserreger über spezielle Rezeptoren auf ihrer Oberfläche. Wissenschaftler/-innen der Uni Freiburg konnten nun beobachten, wie diese Rezeptoren auf der Oberfläche von lebenden Zellen verteilt sind. Sie fanden heraus, dass die Oberfläche der B-Zellen eine charakteristische „Landschaft“ aus miteinander verbundenen Erhebungen und Ausstülpungen bildet. In dieser Landschaft häufen sich die B-Zell-Antigenrezeptoren der IgM-Klasse (IgM-BCR) in bestimmten Bereichen. Die Positionierung der Rezeptoren und Bildung von größeren Einheiten sind wahrscheinlich Mechanismen, die diese Rezeptoren regulieren und deren Erkennung von Fremdstoffen (Antigenen) und damit die Aktivierung von B-Zellen erleichtern.

Oberfläche von B Lymphozten ist strukturiert

In den meisten immunologischen Lehrbüchern werden Lymphozyten als runde, kugelartige Zellen dargestellt, auf deren glatter Oberfläche die Rezeptoren zufällig verteilt sind. Diese Vorstellung einer glatten, unstrukturierten Oberfläche von B-Zellen wurde bereits durch elektronenmikroskopische Aufnahmen von fixierten und gefrorenen Lymphozyten in Frage gestellt. Auf deren Oberfläche wurden dünne Membranausstülpungen, sogenannte Mikrovilli, entdeckt. Diese tentakelartigen Strukturen helfen den Immunzellen bei der Suche nach Antigenen, also molekularen Kennzeichen von Krankheitserregern. B-Lymphozyten erkennen solche Antigene über verschiedene Klassen ihrer BCR Komplexe. Diese Antigenrezeptoren sind molekulare Maschinen, die nach ihrer Aktivierung mit anderen Molekülen interagieren um eine Signalkaskade in Gang zu setzen. Das führt zu einer Differenzierung der B-Zellen zu Plasmazellen, welche große Mengen von schützenden Antikörpern produzieren.

Wie sind die IgM-BCR-Komplexe auf der Oberfläche verteilt?

Die Arbeitsgruppe um Prof. Dr. Michael Reth der Exzellenzcluster BIOSS und CIBSS – Centre for Integrative Biological Signalling Studies der Universität Freiburg hat nun in Zusammenarbeit mit der Gruppe von Prof. Dr. Ralf Reski, der ebenfalls in BIOSS und CIBSS forscht, sowie Wissenschaftlern des Euro-BioImaging (EMBL) und der Universität Osnabrück untersucht, wie die IgM-BCR-Komplexe auf der Oberfläche lebender B-Zellen verteilt sind. Dafür nutzten sie die „Lattice Light Sheet Microscopy“, kurz LLSM, als Technologie. „Diese Methode kann volumetrische Bilder von lebenden Zellen mit besonders hoher Geschwindigkeit in 3-D aufnehmen“, erklärt Dr. Deniz Saltukoglu von der Universität Freiburg, die die Erstautorin der Studie ist.

Möglichst natürliche Umgebung

„Bei anderen hochauflösenden mikroskopischen Methoden müssen die Zellen auf einer flachen Oberfläche anheften, wodurch sich die Oberflächenstrukturen der B-Zellen völlig verändern. Mit der LLSM konnten wir die Zellen in einer Umgebung beobachten, die biologisches Gewebe nachahmt, sodass die Strukturen der B Zellen weitgehend unverändert sind und sich die dynamischen Bewegungen der IgM-BCR-Komplexe verfolgen lassen“, so Saltukoglu.

Neue Berechnungsmethoden für volumetrische Zeitverlaufsdaten

Die Forscherinnen und Forscher entwickelten maßgeschneiderte Methoden zur Bildanalyse, um die mikroskopischen Daten zu quantifizieren und objektiv zu charakterisieren. „Wir mussten die Bilder segmentieren und morphologische Merkmale isolieren“, beschreibt Saltukoglu. „Bisher war dies nur mit zweidimensionalen Daten möglich, also mussten wir neue Berechnungsmethoden für volumetrische Zeitverlaufsdaten entwickeln.“ Dabei nutzten die Forscher/-innen Algorithmen als Inspiration, die sonst für die Kartierung geografischer Daten bei archäologischen Untersuchungen verwendet werden. Mit diesem Ansatz fanden sie heraus, dass die Oberfläche der B-Zellen ein Netzwerk von Erhebungen trägt, an deren Schnittstellen die Mikrovilli sitzen. Innerhalb dieser „zellulären Landschaft“ bilden die IgM-BCRs Cluster, die sich entlang der Membranerhebungen und an den Basen der Mikrovilli konzentrieren.

Steuerung der Aktivität dieser Antigenrezeptoren

„Wir vermuten, dass die verschiedenen topographischen Positionen der IgM-BCR-Cluster die Aktivität dieser Antigenrezeptoren steuern“, sagt Reth. „An den Basen werden die IgM-BCRs möglicherweise negativ reguliert, um zu verhindern, dass sie ungewollt aktiviert werden. Sobald die B-Zellen ein Gefahrensignal erkennen, verlängern sich ihre Mikrovilli, und die IgM-BCR-Cluster werden an die Spitze der Mikrovilli rekrutiert. Dort sind sie optimal positioniert um Antigene zu erkennen, und werden wahrscheinlich auch nicht mehr negativ reguliert.“ Diese Hypothese steht im Einklang mit anderen Erkenntnissen von Reths Gruppe, die darauf hindeuten, dass die IgM-BCRs über Interaktionen mit regulatorischen Co-Rezeptoren reguliert werden. Das heißt, dass Position und Verteilung der Antigenrezeptoren wahrscheinlich zusätzliche Kontrollmechanismen sind, die die Signalübertragung und Aktivierung von Zellen des Immunsystems beeinflussen.

Literatur:
Saltukoglu D, Özdemir B, Holtmannspötter M, et al. (2023): Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. The EMBO Journal, DOI: doi.org/10.15252/embj.2022112030.

Quelle: idw/Albert-Ludwigs-Universität Freiburg im Breisgau

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige